AQUACULTURE 101; MIDWEST SEAFOOD PRODUCTON 1) Economic Overview 2) Feeding, Biogain and Biomass

D. E. Brune¹, R. Pierce² C. Hicks³ R Wright⁴

¹⁾Professor of Bioprocess and Bioenergy Engineering, University of Missouri,
²⁾ Fisheries and Wildlife, University of Missouri
³⁾ Pinnacle Aquatics LLC, Jamestown, Missouri
⁴⁾ Research Associate, University of Missouri Farms

Typical investment, yield and cash-flow Low-yield prawn to super-intensive marine shrimp

<u>System</u>	<u>Yield</u>	Water Treatment
Freshwater Prawns	400-800 lbs/200-days	dilution/pond assimilation
In–Pond Raceway Sunfish	1,500- 2,000 lbs/200 days	dilution/pond assimilation
Recirculating Bass	12,000 lbs/200-days	high-rate biofilter
Zero-Discharge Marine Shrimp	25-35,000 lbs/ac-120-days	super-intensive biofloc

Freshwater Prawns~\$10,000/acreIn–Pond Raceway~ \$12,000/unitRecirculating Bass~ \$100,000/unitZero-Discharge Marine Shrimp~ \$1.6 million/a	\$4,000 – \$8,000/acre-yr \$9,000 – \$12,000/yr hit \$72,000/yr acre \$1,000,000/yr

Feed application is the driver of aquaculture production

In theory, feed consumption can be predicted by equations and charts; Below; Predicted catfish feed consumption and FCR (conversion rate = amount of feed per unit of fish gained)

Fish size (lbs./1000 fish)	Feed consumption (% body weight)	Feed conversion ratio		
60	4.0 - 4.5	1.1 - 1.2		
100	3.5 - 4.0	1.3 - 1.4		
300	2.5 - 3.0	1.4 - 1.6		
600	2.0 - 2.5	1.6 - 1.8		
750	1.5 - 2.0	1.8 - 1.9		
1,000	1.3 - 1.5	1.9 - 2.0		
2,000	1.1 - 1.2	2.0 - 2.2		
3,000	1.0 - 1.1	2.2 - 2.4		

Example; Fish-Feed, Biogain and Biomass prediction

Predicted Feed = Biomass(day-1) x feed rate per day

2,000 lbs biomass x 2.0% per day = 40 lbs feed/day

Biogain = 40 lbs feed/1.5 lbs feed per lb of gain (FCR) = 26.6lbs of fish production

Fish biomass (day-2) = (2,000 lbs + 26.6 lbs) - mortality = 2,020.6 lb biomass

Representative marine shrimp feed application and biomass over 120 day grow-out cycle

Day	Feeding Type	Survival Rate (%)	Size (gm)	Total Biomass (kg)	Feeding Rate % of	Feed Allotment for 10 days (kg)	Cumulative (kg)	FCR
PL ₁₅		100	0.02			7.0	-	
1-10	F ₁	88	0.55	48.47	7.0	33.88	33.88	0.70
1 1-20	F,	83	1.30	107.90	5.0	53.95	78.83	0.81
21-30	F ₁	80	2.88	230.40	5.0	115.20	203.03	0.88
31-40	F2	77	5.25	404.25	4.0	161.70	364.73	0.90
41-50	F2	74	8.05	595.70	4.0	238.28	603.01	1.01
51-60	F2	72	11.80	849.60	3.0	254.88	857.89	1.01
61-70	F3	70	15.85	1109.50	3.0	332.85	1190.74	1.07
71-80	ŕ,	68	20.10	1366.80	2.5	341.70	1532.44	1.18
81-90	F3	67	24.50	1641.50	2.0	410.38	1942.82	1.19
91-100	F_4	66	29.65	1956.90	2.5	391.38	2334.20	1.30
101-110	F4	65	32.60	2119.00	2.0	423.80	2758.00	1.41
111-120	F4	65	35.00	2275.00	2.0	455.00	3213.00	1.41

In actual practice, feed uptake is impacted by water quality, temperature, and fish-health

Fish/shrimp are fed to satiation by observing feeding behavior (floating/surface feeds for most fish and sinking/bottom feeds for most shrimp)

Daily feed uptake is recorded; biogain and accumulated biomass is estimated from expected % feed uptake and animal FCR

Catfish feeding observations / behavior Actual feed application adjusted for uptake

Shrimp bottom feeding;

 Sweep bottom with net; access to bottom required
Observe feed uptake on suspended trays; labor-intensive, multiple trays required for accuracy

https://www.youtube.com/watch?v=A-gTfMvMwRA&feature=player_embedded

Observations of feeding behavior is important

1) Feeding behavior = best indicator of animal health

2) Managing feed application is critical, as feed is major operational cost and most significant impact upon water quality

3) Accurately representing feed uptake = best estimator of daily animal biogain and total biomass in system

4) Example feed suppliers; Cargill, Purina, Rangen, Ziegler

5) Typical feed price; 32%-45% protein = \$0.60 - \$1/00/lb

TUESDAY, JULY 11

9:00-9:30 AQUACULTURE FEEDING AND ECONOMIC SUMMARY9:30-10:00 OVERVIEW OF AQUACULTURE10:00-10:30 WATER QUALITY FOR AQUACULTURE10:30-10:15 BREAK

10:15-10:45 FRESHWATER PRAWN PRODUCTION 10:45- 11: 15 FRESHWATER PRAWNS AT BRADFORD FARMS 11:15 – 12:00 WATER QUALITY MEASUSREMENT TECHNIQUES

12:00 - 1:00 LUNCH

1:00-1:45 AQUACULTURE INTENSIFICATION; PAS, SPLIT PONDS, FLOATING RACEWAYS, RAS 1:45- 2:30 BIOFLOC AQUACULTUE

2:30- 2:45 BREAK

2:45-3:45 TOUR PRAWN PONDS AND ZERO DISCHARGE SHRIMP SYSTEM 3:45- 4:00 QUESTIONS & DISCUSSION

5:00- 6:00 DINNER AT BRADFORD FARM

WEDNESDAY JULY 12

9:00 – 10:30 BUS TO HIGGENSVILLE MO

10:30 – 12:00 TOUR OF ELLIS DIECKOFF RECIRCULATING SYSTEM

12:00-1:00 BOX LUNCH

1:00 – 2:30 BUS TO MU BRADFORD FARMS

2:30-3:00 BREAK

3:00 – 3:45 DISCUSSION OF AQUACULTURE ECONOMICS

3:45-4:00 COURSE EVALUATION/FEEDBACK